\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\def \LWRbooktabscmidruleparen (#1)#2{}\)
\(\newcommand {\LWRbooktabscmidrulenoparen }[1]{}\)
\(\newcommand {\cmidrule }[1][]{\ifnextchar (\LWRbooktabscmidruleparen \LWRbooktabscmidrulenoparen }\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
1
Set theory
Let \(\Omega = \{ 1,2,3,4\} \) be a set. We can say that
\(\seteqnumber{0}{1.}{0}\)
\begin{equation*}
3 \in \{ 1,2,3,4\}
\end{equation*}
which means 3
is an element of
\(\Omega \). We can’t, however, say that \(3\) is a subset of \(\Omega \) because \(3\)
is not a set
but an element. On the contrary we say that the set \(\{3\}\) is a subset of \(\Omega \).
Now consider a set \(\Omega = \{ 1,\{ 1\} ,\{ 2,3\} \} \), i.e. there are three elements in \(\Omega \), one number and two sets.
• for \(x=1, 2, ..., n\) we do
• then we remove \(xx-5\)
– second row1
– second row2
We can
say
that
\(\seteqnumber{0}{1.}{0}\)
\begin{equation}
\label {eq:someq} \{ 2,3\} \in \{ 1,\{ 1\} ,\{ 2,3\} \} f''(x)=7,
\end{equation}
because indeed
(
1.1
)
the set \(\{ 2,3\}\) is an element of \(\Omega \) but we
cannot
say that \(\{ 2,3\} \) is a subset of \(\Omega \).
We can, however, say that \(\{ \{ 2,3\} \} \subset \Omega \) and also \(\{ \{ 2,3\} ,\{ 1\} \} \subset \Omega \), i.e. we are saying that set of subsets is a subset of \(\Omega \).
The rule: in order
to be able to say
that something is a
1
subset of a given set or not we must ensure that there are equal levels of brackets in the comparison.
Figure 1.1: Distribution of max 1-day S&P 500 index losses in 5-day windows. Observed vs fitted distribution. Positive values are losses.
Finally we should also bear in mind that
\(\seteqnumber{0}{1.}{1}\)
\begin{eqnarray*}
\{ 1,2\} &=& \{ 1\} \cup \{ 2\} \\ \{ \{ 1\} ,\{ 2\} \} &=& \{ \{ 1\} \} \cup \{ \{ 2\} \} \\ \{ \{ 1\} ,\{ 2\} \} &\ne & \{ \{ 1\} \cup \{ 2\} \}.
\end{eqnarray*}
Here is another picture.
print ("hello x" )
def myFunction (x):
print (xx)
ahoj
nazdar
ciao!!!
import numpy as np
def incmatrix (genl1,genl2):
m = len (genl1)
n = len (genl2)
M = None #to become the incidence matrix
VT = np.zeros((n*m,1 ), int ) #dummy variable
#compute the bitwise xor matrix
M1 = bitxormatrix(genl1)
M2 = np.triu(bitxormatrix(genl2),1 )
for i in range (m-1 ):
for j in range (i+1 , m):
[r,c] = np.where(M2 == M1[i,j])
for k in range (len (r)):
VT[(i)*n + r[k]] = 1 ;
VT[(i)*n + c[k]] = 1 ;
VT[(j)*n + r[k]] = 1 ;
VT[(j)*n + c[k]] = 1 ;
if M is None :
M = np.copy(VT)
else :
M = np.concatenate((M, VT), 1 )
VT = np.zeros((n*m,1 ), int )
return M
Therefore if we have a set of subsets \(\{ \{ 1\} ,\{ 2\} ,\{ 3\} \} \) the set e.g. \(\{ 1,2,3\} \) is not an element of the set.
xxx yyy
Below is a table positioned exactly here:
Col1
Col2
Col2
Col3
1
6
87837
787
2
7
78
5415
3
545
778
7507
4
545
18744
7560
5
88
788
6344